Takagi-Sugeno Based Controller for Mobile Robot Navigation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Takagi-Sugeno Type Controller for Mobile Robot Navigation

Fuzzy set theory and fuzzy logic are the convenient tools for handling uncertain, imprecise, or unmodeled data in intelligent decision-making systems. The utility of fuzzy logic in system controls domain is presented in the context of a mobile robot navigation control application. The Takagi-Sugeno controller is a fuzzy model capable of approximating a wide class of nonlinear systems by decompo...

متن کامل

Behavior-based neuro-fuzzy controller for mobile robot navigation

This paper discusses a neuro-fuzzy controller for sensor-based mobile robot navigation in indoor environments. The control system consists of a hierarchy of robot behaviors.

متن کامل

Takagi-Sugeno vs. Lyapunov-based tracking control for a wheeled mobile robot

Abstract: In this paper a novel kinematic model is proposed where the transformation between the robot posture and the system state is bijective. Two control approaches are proposed to solve the tracking problem. One approach is based on the Takagi-Sugeno fuzzy model where a parallel distributed compensation control is used. The alternative approach is to use Lyapunov stability analysis to cons...

متن کامل

Development Method for a Takagi-sugeno Pi-fuzzy Controller

The paper proposes a new development method for a Takagi-Sugeno PI-fuzzy controller meant for a class of plants applicable to the fields of electrical drives or servo systems. The developed fuzzy control systems are quasi-optimal in terms of some quadratic performance indices defined in dynamic regimes with respect to the step modifications of the reference input and of four types of disturbanc...

متن کامل

A neural-fuzzy controller for real-time mobile robot navigation

A Neural integrated Fuzzy conTroller (NiF-T), which integrates the fuzzy logic representation of human knowledge with the learning capability of neural networks, is developed for nonlinear dynamic control problems. The NiF-T architecture comprises three distinct parts: (1) Fuzzy logic Membership Functions (FMF), (2) Rule Neural Network (RNN), and (3) Output-Re nement Neural Network (ORNN). FMF ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Sciences

سال: 2006

ISSN: 1812-5654

DOI: 10.3923/jas.2006.1838.1844